
Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 1

Microsoft Visual Basic .NET 2005
Walk-Through and Reference Guide

Matthew Hagaman
Consulting Software Developer and Web Designer

Ideal for creating:
- Non Graphics-Intensive Games
- Data-driven Applications
- Text/HTML/RTF Editors

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 2

Table of Contents

Introduction 4
- Meet the Author
- Pros and Cons of Visual Basic
- How to Use This Book

Chapter 1: Getting Started 5
- Installing Visual Basic 2005 Express Edition
- The .NET Framework
- The Start Page
- Creating Your First Project
- Toolbar Icons
- Toolbox Components
- Placing Components on the Form

Chapter 2: Layout 9
- Layout Controls
- Naming
- Properties

Chapter 3: Laying Out the Word Processor 11
- Why a Word Processor?
- Creating and Manipulating the Form
- Adding the Main Menu
- Adding the RichTextBox

Chapter 4: Coding Basics 13
- Ending a Program
- A Look at Automatically Generated Code
- Variables
- Common Data Types
- Commonly Used Operators
- The Almighty Period, Parentheses, and Comma

Chapter 5: Changing the Properties of a Rich Text Box 16
- Font
- The If...Then Statement
- The Message Box
- Font Color
- Page Color

Chapter 6: Input and Output using a Rich Text Box 19
- Opening a File
- Closing a File
- Saving a File
- The Difference Between Save and Save As...

Chapter 7: Manipulating Text 22
- Using the Clipboard – Cut, Copy, & Paste
- Select All
- Finding Text
- Printing

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 3

Chapter 8: Leftover Menu Items 24
- Undo & Redo
- Zooming
- Running External Programs (Help)
- Adding a Second Form (About this Program)
- A Word About Version Numbers

Chapter 9: A Few Other Things 27
- Other Events
- MDI: Multiple Document Interface
- Arrays
- 0-based and 1-based Indexes
- Modules
- Structures
- Do Loops
- For...Next Loops
- Substrings and Mid
- Generating “Random” Numbers
- Working with Timers
- Focus

Chapter 10: Debugging 32
- Breakpoints
- Viewing the Value of Variables

Chapter 11: Working with GIMP 33
- Where to Get GIMP
- At First Glance
- Drawing Tools
- Using Filters
- Saving and Exporting Pictures

Chapter 12: Distribution 35
- Moving Your Visual Studio Project
- Forms of Distribution
- Install Creator
- Patch Maker

Appendix 1: Glossary 36
Appendix 2: Recommended Software and References 39

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 4

Introduction
First of all, why should you buy this book? Well, you shouldn't. I typically don't charge

for anything, be it writing or software development. I make money only by selling services, be
that creating or modifying a program for business-specific needs.

Meet the Author
Who am I? My name is Matthew Hagaman and I am a junior at Eastern Illinois

University, an Elementary Education major, and a Computer Information Systems minor.
While I do not claim to be a computer genius by any stretch of the imagination, I have been
working with Visual Basic .NET for four years and am more than proficient enough to help
others learn. Programs I have built have been primarily educational games and tools as well
as some database and statistics-related programs I have created for my jobs. I also have a
wealth of experience in the web design world, as I am currently the webmaster for six
businesses and organizations.

But enough about me. My initial goal with this book is to provide a reference for all of
my students. Since I am accustomed to using Visual Basic .NET 2002, this may also provide
a reference to anyone who is making the switch from an earlier version of Visual Basic .NET.
For more information about upgrading from Visual Basic .NET 2002 or 2003, see Appendix 3:
Upgrading.

Pros and Cons of Visual Basic
For starters, let me discuss the pros and cons of the language. Visual Basic (VB) is a

great language for creating data-driven applications (particularly applications that reference
Microsoft Access Databases), Text/HTML/RTF Editors, and non graphics-intensive games
(board game style or old Nintendo-style RPG games), but IS NOT typically used for games
with 3-dimensional graphics. A major drawback in using VB is that any programs you write
can only be run on a computer running Windows 98 or later, and not on any alternative
operating systems such as Linux or Macintosh OS.

How to Use this Book
This book is set up in a number of chapters, each progressively getting the reader

acquainted with the language and its numerous components. Some text is formatted
differently than the rest, for various reasons.

Times New Roman is used to reference another part of the book.
Bold text draws attention to the first time a technical word or term is used.
Courier New is used to indicate actual VB code.
“Quotes” are used to point to text you should see on the screen.
Red Text indicates the text discussing changes in .NET 2005 from earlier versions.

Also, at the back of the book you will find a number of important appendices. Appendix 1 is a
comprehensive glossary (which may come in handy when reading, if you're unfamiliar with a
particular term or an acronym). Appendix 2 is a list of recommended programs (most of which
are free downloads) as well as great written references.

I hope you are able to use this book as a stepping stone as you learn Visual Basic and
as a reference after you are already familiar with the language. If you find you need help, feel
free to send an e-mail to mthagaman@gmail.com and I will try to help you as much as I can.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 5

Chapter 1: Getting Started
 - Installing Visual Basic 2005 Express Edition
 - The .NET Framework
 - The Start Page
 - Creating Your First Project
 - Toolbar Icons
 - Toolbox Components
 - Placing Components on the Form

Installing Visual Basic 2005 Express Edition
For the first time, Microsoft is offering an Express version of Visual Studio1 for free,

and may be downloaded at least through the second half of 20072. Express versions are
available for each component of Visual Studio and have their own documentation packages.
At last check, the programs are available for download (in their complete, registration-free
package) at http://msdn.microsoft.com/vstudio/express/support/install/. If you need to check
on the latest system requirements, visit
http://msdn.microsoft.com/vstudio/express/support/readme/.

The installation is fairly self-explanatory, the only real choices come when deciding
which components to install. Depending on your planned use of Visual Basic (whether you
will need to access large quantities of data, particularly Microsoft JET/ Access Databases),
you may or may not want to install SQL Server 2005 Express. If you think you may need to
access data, you should install it, it never hurts to be prepared. Everyone should install the
MSDN Express Library, which provides (somewhat limited) documentation which will come in
handy when you run into a problem. The other two packages, .NET Framework 2.0 and
Visual Basic .NET 2005 Express Edition, are required.

If you choose to purchase a more advanced version of Visual Studio, the installation
may differ from above. More information on different versions of Visual Studio is available at
http://msdn.microsoft.com/vstudio/products/compare/. I am currently using the Standard
edition which I received through a Microsoft promotion.

The .NET Framework
Before Visual Basic .NET was released and developers were largely using Visual Basic

6.0 to develop Windows applications, components required for the program to run had to be
manually copied or installed on the user's computer. This was a somewhat frustrating
process for developers because they often overlooked a component and their users were
unable to run the program. With the release of Visual Studio .NET, Microsoft switched
distribution models to require that developers not only distribute their application, but the
entire .NET Framework package as well. This has been of great assistance to many
developers, but greatly increases the size of any distribution.

The Start Page
1 Visual Studio: The name given to the software that helps developers create ASP, C++, C# (pronounced C
sharp), J#, and VB programs. While you may only have one language installed, I will refer to the Visual Basic
IDE as Visual Studio from now on.
2 The Second Half of 2007: When the next version of Visual Studio will be released and the decision will be
made to determine if Visual Studio 2007 will have a free/Express version.

http://msdn.microsoft.com/vstudio/express/support/install/
http://msdn.microsoft.com/vstudio/products/compare/
http://msdn.microsoft.com/vstudio/express/support/readme/

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 6

The first screen you see after having installed Visual Basic 2005 (and, if you're running
it for the first time, letting the program configure itself) is the Start Page. The Start Page
provides quick access to recently opened projects, creating projects, and developer news3. It
also provides links to download sample applications and connect with other developers.

Creating Your First Project
To create a project in Visual Studio, either click “Project...” following “Create:” on the

start page or go to File > New Project. You will see that you can create a variety of projects,
but the primary project type we will use is “Windows Application”. Create a Windows
Application now, and call it anything you wish. I would suggest leaving the name
“WindowsApplication1”, a name we can use to indicate we can delete the project later.

Try to acquaint yourself with the new environment, paying close attention to the menu,
toolbar, “Toolbox” on the left, “Solution Explorer” on the right, and “Properties” in the lower
right. While you are investigating, it may be useful to know that the pushpin icon will
change the element from auto-hiding to always showing or vise versa. I typically have
everything but the properties window autohide.

Toolbar Icons

While some of this may not make sense right away, the toolbar icons from left to right are:
New Project: Create a new project to build a new program.
Open File or Project: Open a File (including HTML files, icons, and other, more obscure, formats) or
Project.
Add New Item: Add a new item such as a new Windows Form, Module, etc. These elements will be
discussed later.
Save: Save the item you are currently editing. (I rarely use the “Save” button, I typically only use “Save
All”
Save All: Save everything associated with your project.
Cut, Copy, & Paste: Copy and Remove, Copy, or Replace an item from the clipboard4 into your project.
Find: Locate a word or phrase (be it English or Visual Basic) within the page you currently have open.
Comment Out (Shown Disabled)5: When used in Code view, this makes the program overlook the
selected code without deleting it.
Uncomment (Shown Disabled): When used in Code view, this makes the program recognize and use
the selected code.
Undo & Redo (Shown Disabled): Take back the last action you performed, or do it again.
Start Debugging6: Run your program as the user will see it and pause the program when errors occur.

3 Developer News: News headlines of interest to developers which is pulled from the Internet if you are
connected when the program is first opened.
4 Clipboard: The Windows Clipboard can be used to transfer text, images, or design components from one
place within the application to another or between applications.
5 Disabled: Disabled simply means the button is ghosted or grayed out and may not currently be used, in this
case because we are in design view and not code view.
6 Debugging (Debugger): When you choose start debugging, Visual Studio will run your program as is and
allow you to use it as the user will. When an error of any kind occurs, Visual Studio will report it to you along
with suggestions of how to fix it.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 7

Break/Pause Debugging (Shown Disabled): Pause the program as
it runs, and select the code that is currently being processed.
Stop Debugging (Shown Disabled): End the program and
debugging to make changes.
Step Into: Run the next line of code.
Step Over: Run the next line of code after the current statement.
Step Out: Re-run the code from the beginning of the current
statement.
Solution Explorer, Properties Window, Object Explorer, Toolbox,
& Error List: Show the respective windows (we will explore these
later).

Toolbox Components
The toolbox is the repository for all controls that are used in

a program. While it is possible for a developer to create their own
controls, it is rare because Visual Studio provides so many to
begin with. The “Common Controls” are the controls you will use
most. I will describe the use of each.

Pointer: If you change your mind and decide you do not want to add a
new control, choose the pointer to resume normal editing.
Button: The control users are most drawn to...they know something
will happen when they click it. Typically used to start or stop an action.
CheckBox: The best way to have a user enter a true/false answer.
Example: Receive junk e-mail?
CheckedListBox: A step above the list box, this is used to allow the
user to enter a true/false answer to a bunch of questions at once.
Example: Which items do you want to buy?
ComboBox: A great way to present a list in a small amount of space.
Clicking a downward-pointing arrow will present the user with a list of
choices.
DateTimePicker: A great way to present a calendar in a small amount
of space. Clicking the downward-pointing arrow will cause a calendar
to appear on-screen.
Label: Perhaps the most used control available, the label is used to
tell the user what they should do with a control. Example: A label
reading “Items To Print' above a CheckedListBox tells the user that any
items they check will be printed.
LinkLabel: The LinkLabel is typically used to point the user to a web
page - not a control I commonly use.
ListBox: Presents the user with a list of items to select from.
ListView: Think files...large icons with text beneath that can be used
to open files, link the user to a web page, open another component of
the program, etcetera.
MaskedTextBox: The masked text box, new in Visual Basic .NET
2005, allows the programmer to specify a format for data being
entered. Example: ###-#### for a phone number.
MonthCalendar: Allows the user to choose a date from a calendar.
NotifyIcon7: An icon that will appear not as part of the program, but in
the user's computer's system tray - in the bottom right-hand corner of
the screen, next to the clock.

7 Like many other controls, the NotifyIcon cannot be added to a form, but instead appears in a tray of sorts at
the bottom of Visual Studio. It will not appear on the form, but may appear elsewhere on the user's screen, in
this case as an icon in the system tray of the task bar (on the bottom right-hand corner of the screen, next to the
clock).

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 8

NumericUpDown: Allows the user to choose a number from a list; a simple version of the ListBox.
PictureBox: Places an image or icon on the screen.
ProgressBar: Gives the user a visual indication of how far a process has progressed (seen most often
in software installations).
RadioButton: Allows the user to choose only one option, as opposed to the CheckBox, which lets the
user choose any or all options.
RichTextBox: An advanced version of the TextBox, the RichTextBox allows the user to open, edit, and
save not only Plain Text, but Rich Text (RTF) as well.
TextBox: Typically used to allow the user to view or enter a smaller amount of text.
ToolTip: A control that allows the developer to provide the user with information when they hold the
mouse over an object. The boxed “Pointer” on the previous page is an example of how ToolTips appear
to the user.
TreeView: Gives the user a hierarchical view of items, or a view that indicates rank or progression. The
classic computer example is where the upper level would be a folder, and within it are files.
WebBrowser: A very rich control that required more complex references in previous versions of Visual
Studio .NET, this allows the user to browse the web (and any files that can be viewed in a web browser)
from within your application.

Other controls that are important, but not included in the “Common Controls” list are:
ContextMenuStrip: Provides the user with a list of options when they right-click. Examples include
(when right-clicking a RichTextBox) cut, copy, paste, font, color, and print.
ImageList: Primarily used for icons within toolbars, the ImageList makes it easy to build many images
into the program and make them easily accessible to the developer.
MenuStrip: The standard File, Edit, etc. menu bar that can be customized with any heading, item, or
hierarchy.
StatusStrip: Used to give the user constant access to changing information. For example, an item in
the status bar of a word processing program may be “[current page] out of [total pages]”.
Timer: As you might imagine, the timer is used to cause a delay between one action and another.
ToolStrip: The ToolStrip control is the standard toolbar that appears in many programs, with
customizable icons, text, button types, etc.
TrackBar: The trackbar is a control that is like a virtual knob, typically used to allow subtle variations in
value, such as subtle changes in volume.

In addition, all of the printing and dialog controls are very important, but will be investigated
as we move on. Other controls involved in layout will be discussed in Chapter 2: Layout.

As you may have noticed, each control's name does not contain any spaces. This will
be true throughout your development experience; anything you create and name may not
have spaces in the name.

Placing Components on the Form
Most of the components we have discussed can be dragged from the toolbox onto the

form or copied by first clicking the name of the component in the toolbox and then clicking the
desired location on the form. The Form is another name for screen real estate, or the space
that you have to place items on. The Form will appear virtually the same way in the
application program as it does on the development screen. You may drag items around and
resize them as you see fit. Note that not all items will not appear on the form, as some will
appear only when called upon on, particularly the dialog boxes. For more information on
placing components on the screen, see Chapter 2, where we explore the layout of a Windows
Form.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 9

Chapter 2: Layout
 - Layout Controls
 - Naming
 - Properties

Layout Controls
There is a much wider variety of layout controls available in Visual Studio .NET 2005

than there was in earlier versions. The new layout tools alone are a good reason to make the
switch.

GroupBox: A group box is simply a box with an engraved-looking line that acts as a form on top of a
form, It is a small piece of real estate that groups all controls within it so when the GroupBox is moved,
all of the controls in it move at the same time.
Panel: A control that, like the GroupBox, acts as a form on top of a form; without the engraved line.
TabControl: This control allows you to pack more onto a form. Clicking a tab will change the visible
‘page.’
TableLayoutPanel: An easy way to organize controls in columns and rows.
ToolStripContainer: A toolbar control that contains buttons of either icons or text.

In addition to new controls, Visual Studio 2005 includes a number of new tools that
allow the designer to easily space and center controls within the form. These tools are
available in the "Format" menu.

Naming
Everything in Visual Basic must be named. When you place a control on the form, its name is
automatically assigned as ControlType# (such as TextBox1). When you need to do anything
in Visual Basic code, it makes things much easier to have controls well-labeled, so when I
place any control on the form, I name it (which is achieved by changing the "Name" property
in the Properties window. When naming items, I like to use a formula to enable easy
identification of both the type of control and its purpose. You can, of course, adopt your own
method, but in any examples I give, I will use this naming system. The prefixes that
designate the type of control are as follows.

Button: btn
CheckBox: chk
ComboBox: cmbo
ListBox: lst
Label: lbl
PictureBox: pic
ProgressBar: prg
MenuItem: mnu (may no longer be applicable in VB2005, as discussed in the menu section)
RadioButton: rdo
RichTextBox: rtb
TextBox: txt

Items not used frequently do not need to be named. When using a single timer or
dialog (SaveFileDialog, PrintSetupDialog, etc), it's easy to remember a name like Timer1.

Also, it is not necessary to name items that will never have an action assigned to them,
such as labels, top menu items (File, Edit, View, etc.), or, in some cases, group boxes.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 10

Properties
Nearly everything done in Visual Basic is done by altering properties of the controls

that have been placed on the form. Properties can be changed in one of two ways: by using
the properties window during design (as explored earlier) or by altering the properties directly
in the code. Examples of properties that are important in layout are the BackColor,
ForeColor, BorderStyle, Font, etcetera.

We'll explore properties further in our main project, a word processor.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 11

Chapter 3: Laying Out the Word Processor
 - Why a Word Processor?
 - Creating and Manipulating the Form
 - Adding the Main Menu
 - Adding the RichTextBox

Why a Word Processor?
While a word processor may seem to be a very simple program, it can actually be quite

complex, and with it we can cover nearly everything used in VB .NET programs.

Creating and Manipulating the Form
To begin, open Visual Studio 2005 and create a new project. Make sure "Windows

Application" in the right pane is selected (if you do not see it, select Visual Basic > Windows
in the left pane) and name it "WordProcessor1".

In the properties window on the right side of the screen, change "Size" to "1024, 768".
The majority of monitors (somewhere around 70%) in use throughout the US and the world
are set to a 1024x768 pixel resolution, so this is a good default for most forms in most
programs.

While we're at it, set "StartPosition" to CenterScreen, and disable the option to
maximize the window (set "Maximize Box" to False). Also, set "Text" to "Word Processor".
You will notice that after changing the value of "Text", the new value appears in the top left-
hand corner of the form.

Adding the Main Menu
Now we will begin to place various controls on the form. To begin, place a MenuStrip

(under Menus & Toolbars in the toolbox) on the form and fill in the following text / commands.
The underlined items should be at the very top of the menu structure, with each of the other
items underneath them.

&File
&Open...
&Close

-
&Save

Save &As...
-

&Print...
-

E&xit

&Edit
&Undo
&Redo

-
Cu&t

&Copy
&Paste

-
Select &All

-
&Find...

Find &Next

&View
&Font...

Font &Color...
-

&Page Color
-

&Zoom

&Help
&Help...

-
&About this Program

When entering these items, you will notice that the dashes create separators, or
engraved lines between items. This is simply to group similar objects. Also, you will quickly
notice the "&"s in the item text does not show up when you move on to create the new item.
Instead, the character (letter) that follows the "&" is underlined. This indicates the user can
use the Alt menu shortcuts, meaning the user can press Alt and then two or three keys
instead of navigating the menu with the mouse. For example, in File > Exit, if you entered it

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 12

as "&File" and "E&xit", the user could press Alt, F, then X to exit. Note that the & precedes
the "most significant character" and can be any letter not repeated in the same menu
structure. For example, the significant letter in "Cut" is the "t" because "C" is used by in the
Edit menu by "Copy" and "U" is used by "Undo".

Similarly, you can designate keyboard shortcuts for users to use as well. Following are
a few common keyboard shortcuts used in nearly every program. If you allow keyboard
shortcuts in your program, and use these commands, it is best to use these shortcuts so
users do not have to learn a completely new set of shortcuts for your program.

Open - Ctrl + O
Save - Ctrl + S
Print - Ctrl + P
Exit - Alt + F4
Undo - Ctrl + Z
Redo - Ctrl + Y

Cut - Ctrl + X
Copy - Ctrl + C
Paste - Ctrl + V

Select All - Ctrl + A
Find - Ctrl + F

Help - F1

Adding the RichTextBox
Find the RichTextBox in the toolbox (under Common Controls) and place it on your

form. Before resizing it, make sure the Form itself is still sized "1024, 768" (sometimes
adding a menu will change the size of the form). Then, stretch the RichTextBox so it fills the
remainder of the screen. As you move or resize the box, the IDE will help you keep the size
from going past the border of the form. As you drag, you should notice blue lines at the edge
of the form. This is a new feature in Visual Studio 2005, and it is very useful in spacing every
control on your form a standard distance from each other and the borders. Similarly, if you
are using multiple TextBoxes, a purple line aligns the text itself instead of the TextBoxes'
edges.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 13

Chapter 4: Coding Basics
- Ending a Program
- A Look at Automatically Generated Code
- Variables
- Common Data Types
- The Almighty Period, Parentheses, and Comma

Ending a Program
In this chapter we are going to begin working with Visual Basic code, which means we

have to switch to code view. The easiest way to switch from design view to code view is by
double-clicking the control you will use to initiate an action. In this case, we are are going to
double-click the File > Exit menu item. In the space that appears, we are going to type End.
When the user selects Exit from the File menu, the program will end.

A Look at Automatically Generated Code
When you wrote the code to exit the program, you probably noticed the code that was

already on the screen.

Public Class Form1

Private Sub ExitToolStripMenuItem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ExitToolStripMenuItem.Click

End
End Sub

End Class

At the top of it all are the words "Public Class", in blue, and "Form1", in black (unless, of
course, you renamed the form). "Public" simply means the contents of the form are
accessible to any part of your program. Similarly, "Private" indicates that the contents of the
sub are only accessible to the Sub itself. A "Sub" is called a number of things, including
procedure or function. It is simply a segment of the code, in this case called to action when
the user clicks the ExitToolStripMenuItem (as indicated by "Handles
ExitToolStripMenuItem.Click"). While "ExitToolStripMenuItem_Click" may look important, it is
not actually part of the code beyond being the name of the sub. You can change the name,
though it is recommended that you leave it as it is automatically named, because it is a very
descriptive name. "sender" and "e" are both variables that can be used within the sub.

Variables
Understanding variables is very important in any language, but particularly in Visual

Basic. When a variable is created, a small space is set aside in your computer's memory.
This space will hold anything you put into it (such as text or numbers). The type of data the
variable holds is usually declared when the variable is created.

Dim HP as integer = 100

In the above example, the variable HP (short for Health Points in many games) is created (or
dimensioned) to hold a specific data type: a number - more specifically an integer, or a whole
number. At the same time HP was dimensioned, its value was set to 100.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 14

Variables are very important in any program, but it is important to note that variables
are saved into the computer's memory and not the hard drive. When your program is closed
(or sooner, depending on where the variable is declared, see the next paragraph) the variable
and its value will be deleted, so other programs have access to the memory space that the
variable was using. A variable (or data) can be saved in a non-volatile manner, and these
procedures will be discussed in Chapter 6.

You have already seen three ways a variable can be created in Visual Basic code
(Public, Private, Dim). Public variables (or procedures) can be accessed anywhere within a
form (or anywhere in your program if created in a module - to be discussed later). Private
variables (or procedures) can only be accessed by lower hierarchy code (indicated by the
tabbed spaces at the beginning of every line of code). Dimmed variables can be accessed by
any code at the same hierarchy or any code at a lower hierarchy. There are two additional
ways to create a variable, but they can only be used within the parentheses of a procedure.
"ByVal" variables (see an example in A Look at Automatically Generated Code above) and
"ByRef" variables will be discussed later.

Common Variable Types
Boolean - A boolean variable can contain one of two values: true or false. It takes up almost

no space in memory and is ideal to use if you need to store information with only two
possibilities, for example true/false, yes/no, right/wrong, dead/alive...

Char - A char variable will store a single character, be it letter, number, or punctuation mark.
Date - A date variable will store a day and time of day. While there are many formatting

options, one valid date would be 6/11/2007, 13:00.
Decimal - A decimal variable is used when a precise number needs to be saved. If only a

whole number is needed, Integer should be used because it uses less memory.
Integer - A integer variable will store any whole number.
Stack – A variable that stores and recalls data in the order in which it is added. An excellent

example of use for this type of variable is in a web browser. When you click any link, the
destination is added to the top of the 'Back' stack. When you click 'Back', you take the last
destination from the top of the stack, load it, and add it to the top of the 'Forward' stack.
When you click 'Forward', you take the page at the top of the 'Forward' stack, load it, and
add the page's URL to the top of the 'Back' stack.

String - A string variable will store a string of characters, or any text, be it a word, phrase,
sentence, or paragraph. A string is always surrounded by quotation marks.

Commonly Used Operators
= The equal sign is used whenever you want to set a property or variable to a value. For
example, RichTextBox1.Text = "bologna" would set the text in RichTextBox1 to
"bologna".
+, -, *, / These symbols are used as you might expect, mathematically. + is used to add
numbers, - to subtract, * to multiply, and / to divide.
& The ampersand symbol is used to combine strings. For example, RichTextBox1.Text
= "Bologna" & " and " & "cheese" would set the text in RichTextBox1 to "Bologna
and cheese".
+= When dealing with numerical variables, it is often useful to use the += shortcut. Saying
Count += 1 is the same as saying Count = Count + 1.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 15

-= Similarly, saying Count -= 1 is the same as saying Count = Count - 1.

The Almighty Period, Parentheses, and Comma
Intriguing Section Heading? It should be. The three most used characters in Visual

Basic code are the period, the parentheses, and the comma. As you will see in Chapter 5, the
color of the background of a RichTextBox is accomplished by using code similar to
RichTextBox1.BackColor = Color.Black. As you can see, the period allows you to
change properties when entered after an object's name. While the period gives you access to
an object's properties, parentheses give you access to an object's functions. For example, as
you will see in Chapter 7, a RichTextBox can be searched using code like
RichTextBox1.Find("Text to find", RichTextBoxFinds.MatchCase). The
comma, as in the last example, allows you to specify different options within a function.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 16

Chapter 5: Changing the Properties of a Rich Text Box
 - Font
 - The If...Then Statement
 - The Message Box
 - Font Color
 - Page Color

I'm sure by now you hate me. Or Visual Basic. Or both. Well, chin up! Now we get
into learning by doing. Make sure your WordProcessor1 project is still open and read on!

Font
In the code view mode, click on the first dropdown under the tabs. Select

"FontToolStripMenuItem" and then select "Click" from the dropdown on the right. This is an
alternate way of automatically generating the control code (an alternative of double-clicking
the item in the design view). Type the following:

Dim FontDialog1 As New FontDialog
FontDialog1.Font = RichTextBox1.SelectionFont
If FontDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

RichTextBox1.SelectionFont = FontDialog1.Font
End If

The first line of code does the same thing dragging a FontDialog from the toolbox onto the
form in design view would do. We created it in the code so it would be more memory-
efficient. This can be done with any control, though the control will be eliminated (or disposed
of) at the end of the Sub. The second line of code makes sure the font options already
selected in the dialog when it opens are the same as any selected text in RichTextBox1. The
FontDialog1.ShowDialog() code brings the dialog onto the screen so the user can
interact with it. The third line simply applies the font selections the user made in the dialog to
any selected text in RichTextBox1. If you want the changes to be applied to all the text in
RichTextBox1, replace RichTextBox1.SelectionFont with RichTextBox1.Font.

The If...Then Statement
The If...Then statement will likely be used hundreds of times in any program. It allows

you to specify code to run only under certain conditions. In the previous case, the changes
would be applied only if the user clicked "OK", not if they clicked "Cancel".

If...Thens should be fairly easy to understand. IF the user clicks OK, THEN the code
between "Then" and "End If" will run. There is an additional (optional) word that can be used,
Else. For example (please don't put this code in your program),

If FontDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then
RichTextBox1.SelectionFont = FontDialog1.Font

Else
MsgBox("Doughnuts Dread Dancing")

End If

IF the user clicks OK, the code between the "Then" and "Else" will run. If the user does not
OK (or instead clicks Cancel or the X to close the dialog), the code between "Else" and "End
If" will run.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 17

The Message Box
A widely used function in Visual Basic is the message box, which

simply brings a small dialog window up onto the screen, containing the
text you specify. In the above example, if the user were to click Cancel
instead of OK, a small box that looks like this would appear to inform the
user that doughnuts dread dancing.

In addition to the text that the message box will display, you can
also choose buttons to appear or the text to appear in the title. To specify which buttons to
show you can add (for example) ', MsgBoxStyle.YesNo' after the last quote in that line of code
but before the closing parenthesie. To specify a title, you can (for example) add ', "FYI:"' after
', MsgBoxStyle.YesNo' or ', , "FYI:"' if you have not specified buttons. In using a function,
when there are a number of options that can specified, each option has it's own slot. If you do
not wish to specify the type of MsgBoxStyle (which defaults to MsgBoxStyle.OK), you can
type a comma and a space before moving on to the next option.

If you look at the Font code above, you may notice a problem. If the user has not
selected any text and instead intends to change the font for the whole document, they will
quickly become confused and frustrated. We need to write code to change the whole
document's font. We can decide whether or not they intend to change the font of the
selection or the whole document based on whether or not text is selected using the following
code.

Dim FontDialog1 As New FontDialog
 If RichTextBox1.SelectedText <> "" Then
 FontDialog1.Font = RichTextBox1.SelectionFont

If FontDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then
RichTextBox1.SelectionFont = FontDialog1.Font

End If
Else

FontDialog1.Font = RichTextBox1.Font
If FontDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

RichTextBox1.Font = FontDialog1.Font
End If

End If

You can see that we placed the code dimming of FontDialog1 before the If...Then
statement because we want this line of code to run regardless of the selection. The <> in the
second line means "not equal", so the code between the If and Else will be executed (run) if
any text is selected. If no text is selected, or RichTextBox1.SelectedText is "" (empty), the
code between the Else and End If will run.

Font Color
From either the code view or the design view, prepare to enter the code that runs when

the user clicks on View > Font Color. This code will be very similar to the Font code we
entered at the beginning of this chapter.

Dim ColorDialog1 As New ColorDialog
If RichTextBox1.SelectedText <> "" Then

ColorDialog1.Color = RichTextBox1.SelectionColor

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 18

If ColorDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then
RichTextBox1.SelectionColor = ColorDialog1.Color
End If

Else
ColorDialog1.Color = RichTextBox1.ForeColor
If ColorDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then
RichTextBox1.ForeColor = ColorDialog1.Color
End If

End If

Page Color
The page color can be changed, but it will not be saved in any format the RichTextBox

can save in. Instead, the background color is something that would normally be saved in
program preferences. However, it is easy to code.

Dim ColorDialog1 As New ColorDialog
If ColorDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

RichTextBox1.BackColor = ColorDialog1.Color
End If

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 19

Chapter 6: Input and Output using a Rich Text Box
- Opening a File
- Closing a File
- Saving a File
- The Difference Between Save and Save As...

Opening a File
This can be achieved by choosing “Open” from the “File” menu of the Visual Studio

IDE. Okay, that's not what this section is about, but it does seem like a good time to mention
that Microsoft Visual Studio .NET 2005 will allow you to open and often edit a large quantity of
different file types.

From the design view, double-click File > Open (or select “OpenToolStripMenuItem”
from the drop-down in the code view and select “Click” from the second drop-down). Enter
this code (though you may read ahead before doing so):

If RichTextBox1.Text <> "" Then
Call OpeningCode()

Else
If MsgBox("Opening a new file will erase any text currently loaded.

Are you sure you want to continue?", MsgBoxStyle.YesNo, "Caution") =
MsgBoxResult.Yes Then

RichTextBox1.Text = ""
Call OpeningCode()

End If
End If

At the second line of code, Visual Studio should tell you that OpeningCode() has not been
defined. That is because OpeningCode() is a new Sub (procedure) I created separately.
Place this code at the very end of all the code in a new line before “End Class”.

Private Sub OpeningCode()
Dim OpenFileDialog1 As New OpenFileDialog
OpenFileDialog1.Filter = "Plain Text Files|*.txt"
If OpenFileDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

RichTextBox1.LoadFile(OpenFileDialog1.FileName,
RichTextBoxStreamType.PlainText)

End If
End Sub

The reason I created a Sub instead of typing the code directly is because the same code has
to be run twice. While I could duplicate the code, this makes it easier to fix any problems that
might emerge. If I use a Sub instead of duplicating the code, I only have to fix a bug in a
single place instead of many.

So the code at the beginning of the chapter reads: IF there is any text in RichTextBox1
(If RichTextBox1 is not empty), THEN the code inside of the sub OpeningCode() is run.
Otherwise, the user is asked to verify that they want to erase its contents before loading the
new file.

In OpeningCode() we dimension an OpenFileDialog (similar in function to the font and
color dialogs) and set the filter for it. The filter determines which file types can be opened by
the program, so the user does not try opening a picture as text (as doing so would cause lots

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 20

of errors). In the filter line of code, we give a description of files that can be opened – in this
case “Plain Text Files”. The syntax requires a pipe (|) to separate the description of the
extension from the actual extension. We then specify the extension by preceding the
extension with an asterisk and a period, in this case “*.txt” files. Please note that in Visual
Basic (as many computer languages), the asterisk is a wildcard, meaning anything can fill
that space. In this case, any file ending in “.txt” will be visible. However, if we wanted to
tweak the filter to open Plain Text Files that start with the letter A, we could change “|*.txt” to
“|a*.txt”. We could also set the filter to open Plain Text Files that end with the letter A by
changing “|*.txt” to “|*a.txt”.

Closing a File
Closing a file is accomplished by asking the user if they would like to save any existing

text before emptying the RichTextBox. Try writing some of this code on your own before
referencing it below.

If RichTextBox1.Text <> "" Then
If MsgBox("Would you like to save your progress before closing this

file?", MsgBoxStyle.YesNo, "Save?") = MsgBoxResult.Yes Then
SaveToolStripMenuItem.PerformClick()

End If
End If
RichTextBox1.Text = ""

The SaveToolStripMenuItem.PerformClick() instructs Visual Studio to pretend the
user has clicked File > Save. It is an alternative to creating a Sub when you are referencing
the same code in multiple places, because the code to save the file would be the same here
as it would be if the user were to click File > Save.

Saving a File
Saving a File is very similar to opening a file. Enter the code for the “Save As...” menu

item (not “Save”).

Dim SaveFileDialog1 As New SaveFileDialog
SaveFileDialog1.Filter = "Plain Text Files|*.txt"
If SaveFileDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

RichTextBox1.SaveFile(SaveFileDialog1.FileName,
RichTextBoxStreamType.PlainText)

End If

The Difference Between Save and Save As...
Many programs have both Save and Save As options. The Save menu item saves the

file without prompting for a location and will overwrite the existing file, whereas the Save As
menu item asks where to save it. The following code excludes the save file dialog and
replaces it with a variable that can be filled when a file is opened.

If CurrentFileLocation <> "" Then
RichTextBox1.SaveFile(CurrentFileLocation,

RichTextBoxStreamType.PlainText)
End If

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 21

In order for this to work, we have to first define the variable CurrentFileLocation. Define it at
the top of the code page, underneath “Public Class Form1” - defining it there will make the
contents available to any Sub on the form. Define the variable as a string. We also have to
adapt our opening code to populate the variable with the file location. This code is
CurrentFileLocation = OpenFileDialog1.FileName and should be placed within
the If statement in the OpeningCode() Sub. While we are at it, we should place
CurrentFileLocation = SaveFileDialog1.FileName in the If statement of the
SaveAsToolStripMenuItem. If the user decides to Save As... in order to save the file with a
new name or in a different location, we need to make sure the Save menu item keeps track of
this.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 22

Chapter 7: Manipulating Text
- Using the Clipboard – Cutting, Copying, & Pasting
- Select All
- Finding Text
- Printing

Using the Clipboard – Cutting, Copying, & Pasting
The clipboard, as you may know, is a virtual layaway. It will store things like text to be

used at a later point in the same or a different document. Cutting will store the text in the
clipboard before deleting it from the document, copying text will simply store the text in the
clipboard without deleting it from the document, and pasting text will place text from the
clipboard into the document.

There are several ways of storing text on the clipboard. One way is to use
Clipboard.SetData and specify the data type as text.

Clipboard.SetData(Windows.Forms.DataFormats.Text, RichTextBox1.SelectedText)

You can also use the RichTextBox.Copy() function, but the SetData function is useful to
know because with it you can copy HTML, images, sounds, or other data as well as text.
Using the RichTextBox.Copy() function, the code would look like this. You can choose
which you would like to use.

RichTextBox1.Copy()

The code for cutting text is going to be almost identical to the code for copying. The
only change is that when text has been selected, the selected text needs to be deleted from
the document. To do this, add the line RichTextBox1.SelectedText=””. Alternately,
you may use RichTextBox1.Cut().

The easiest option for pasting is simply RichTextBox1.Paste(), though setting
RichTextBox1.SelectedText equal to Clipboard.GetData(Windows.Forms.Data
Formats.Text) is also an option.

Select All
To select all of the text in a text box, simply use code similar to the following.

RichTextBox1.SelectAll()

Finding Text
Before we get into the code for finding text, we need to declare two global variables

StringToFind and FindLoc (so any Sub in the program can access them). To do this, declare
them at the top of the code page, below Class Form1 and below the other variable we
declared globally, CurrentFileLocation. StringToFind needs to be dimmed as a string, and
FindLoc needs to be declared as an integer.

FindLoc = 0
StringToFind = InputBox("Enter the string to find", "Find", "")

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 23

FindNextToolStripMenuItem.PerformClick()

To find text, we need to ask the user for the string they wish to find. An InputBox is
much like a MessageBox in that it is a small dialog that appears onscreen, the InputBox with
a label (prompt) and a TextBox. The second line of code above sets StringToFind equal to
whatever the user enters in an InputBox. The options that are specified in the InputBox are
the prompt (“Enter the string to find”), the Title (“Find”), and default value. The default value is
empty (“”) because while it is not a useful function of the InputBox now, it is important to know
that you can specify the initial value. The third line of code instructs the program to run the
'Find Next' code.

The following code should run when the user clicks 'Find Next'.

Try
FindLoc = RichTextBox1.Text.IndexOf(StringToFind, FindLoc)
RichTextBox1.Find(StringToFind, FindLoc, RichTextBoxFinds.None)
FindLoc += 1

Catch
FindLoc = 0

End Try

The FindLoc variable will store the location of the last text found. RichTextBox1.Text.IndexOf
will find the index of character in the text box, where the search string is found (“x” has an
index of 3 in “text”). Because we have used RichTextBox1.Text.IndexOf() to find the desired
text, the only purpose of RichTextBox1.Find is to highlight the targeted text. In the
RichTextBox.Find() function, StringToFind is the string we are looking for, FindLoc is the
index at which the search will begin, and RichTextBoxFinds.None specifies that the the
search is NOT case sensitive. RichTextBoxFinds.MatchCase can be used if you do want the
search to be case sensitive. We set FindLoc += 1 because we want the program to find the
next instance of the search string if the user clicks 'Find Next' again.

The Try...Catch can be very useful, but also very risky. If anything goes wrong when
the code between Try and Catch is run, the program will not give an error message, but
instead run the code that appears between Catch and End Try. In this case, the Try...Catch
is intended to prevent a specific error that will occur if the user continues searching for a
string after the last instance has been found. In that case, the program needs to start
searching back at the beginning to avoid an error. However, you need to be careful in using
Try...Catch, because it easy to add the Try, Catch, and End Try early on in programming and
as a result miss an important bug when testing.

Printing
I have chosen not to cover printing, because it is a fairly involved subject that does not

need to be discussed in a gaming class. If you are feeling ambitious and would like to know
how to print, feel free to ask, but for now, return to the design view and double-click the Form
(the title bar, not the menu bar is a good place to do this). Any code you enter here will run
when the Form first opens. Type PrintToolStripMenuItem.Enabled = False. This
will make the Print menu item appear ghosted or gray, which indicates to the user that it is not
available.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 24

Chapter 8: Leftover Menu Items
- Undo & Redo
- Zooming
- Running External Programs (Help)
- Adding a Second Form (About this Program)

Undo & Redo
Undo and Redo are two functions that are built into the RichTextBox, but a similar

effect can be created in games (such as card games) by creating and using stack variables.
To use the built-in functions of the RichTextBox, simply use RichTextBox1.Undo() or
RichTextBox1.Redo(). In fact, the hardest part of Undo and Redo are telling the Program
when the options are available. In order to do this, we need to check whether or not each
function is available (whether the user has made changes or not) when the user places their
mouse over 'Edit'. To automatically generate the code for this, select EditToolStripMenuItem
from the drop-down menu at the top of the code view and select Click from the second drop-
down. Here, enter the code that follows.

If RichTextBox1.CanUndo = True Then UndoToolStripMenuItem.Enabled = True _
Else UndoToolStripMenuItem.Enabled = False

You can see from this example that If...Then...Else statements do not have to be on their own
lines, but they can be on a single line, though. At the same time, you will notice the
underscore character (_), which in Visual Basic is used to essentially join one line of code
with the next. If there is a very long line of code, the underscore character can be used to
break it up so you do not have to scroll right and left to see the whole line.

The code to detect if Redoing is a possibility is identical to the code for undoing, with
the word 'redo' replacing 'undo'. Both sets of code need to be in the
EditToolStripMenuItem.MouseEnter Sub before continuing.

Zooming
Before writing the code to zoom, let's add a few items to our menu. To the right of

Zoom (in the View menu), so the new options appear when the user clicks or hovers over
'Zoom', enter the following items.

Zoom &Out (Ctrl+OemMinus / Ctrl+-)
Zoom &In (Ctrl+Oemplus / Ctrl++)
&Custom Zoom

While in Visual Basic 6.0 and earlier the font had to be changed to make text bigger, in
VB.NET the RichTextBox has a ZoomFactor property. This property is a decimal number,
where 1.0 corresponds with 100% (normal size), .5 corresponds with 50% (half size), and 3.0
corresponds with 300% (triple size). The Zoom Out menu item should decrease the
ZoomFactor from whatever its current value is by a set number, such as .1 (HINT: Use the -=
operator from Chapter 4). Zoom In should do the opposite, increasing the ZoomFactor a set
number. Custom Zoom should convert and set whatever value the user enters in an input
box from a percent to the ZoomFactor decimal. Try to accomplish each of these three tasks
on your own before referring to the examples on the next page.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 25

Private Sub ZoomOutToolStripMenuItem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ZoomOutToolStripMenuItem.Click
 RichTextBox1.ZoomFactor -= 0.1

End Sub

Private Sub ZoomInToolStripMenuItem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles ZoomInToolStripMenuItem.Click

RichTextBox1.ZoomFactor += 0.1
End Sub

Private Sub CustomZoomToolStripMenuItem_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles CustomZoomToolStripMenuItem.Click

Dim CZvar As String = InputBox("Please enter a percent of normal
view.", "Custom Zoom", "100%")

If CZvar.EndsWith("%") Then
RichTextBox1.ZoomFactor = CZvar.Substring(1, CZvar.Length - 1) /

100
Else

RichTextBox1.ZoomFactor = CZvar / 100
End If

End Sub

The Custom Zoom code above creates a variable so that we can check the number entered
for a percent sign. If the variable ends with the percent sign, we use the substring (only part
of the string stored in the variable) instead of the whole string. In order to do this, we used
CZvar.Substring(1, CZvar.Length - 1). The first number is the index of where the substring
should start, and the second number is the length to take for the substring. In this case, the
second number is just the length of the string stored in the variable minus 1. In the end, we
had to divide the number the user entered by 100 to convert the number from percent to
ZoomFactor decimal.

It's okay if you did not plan on the contingency that the user might enter a percent
symbol at the end of the number. In fact, the code above is not even foolproof. If the user
enters any letters or punction other than % at the end, the program will produce an error. At
this point you do not have to plan for every possibility, but you should begin to think about
them.

Running External Programs (Help)
Usually the Help included in a program is actually a second program. If you were to

make a second program to handle the Help files associated with your word processor you
would use the code that follows. If you would like to, you should be able to easily alter the
word processor you have already built to be a framework for handling help documents for any
program you write in the future.

System.Diagnostics.Process.Start("StartHelpFile.txt", MyHelpProgram.exe)

The code above opens a specific file in a specific program. The same code without the
"StartHelpFile.txt" would simply open the specified program. If you do not plan on adding
a Help application, disable the Help menu Item (not the heading, but the item) by changing
the Enabled property to False.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 26

Adding a Second Form (About this Program)
To add a second form to your project, access the Solution Explorer and right-click your

project's name. Choose Add > WindowsForm. In the dialog that appears, name your new
form frmAbout.vb. Change the Size of your new form to “512, 384”, set the Start Position to
CenterScreen, and set MaximizeBox to False. Then enter some information about the
program. This should include the name of the program, a version number, and a copyright
notice. Any software you create can be protected by copyright. Also be sure to include a
'Close' button, which should initiate the code Me.Close() when clicked. Note that disabling
the AutoSize option on labels will allow you to resize them and force the text to wrap.

The code to bring this window forth is fairly easy. When the user clicks on Help > About,
enter this code to run.

frmAbout.ShowDialog()

A Word About Version Numbers
Actually, more than one word. Version numbers can include numbers and letters. The

initial retail version (the first final version) is typically version 1.0, with each earlier version a
number smaller (commonly 0.2, 0.8, 0.95 based on progress towards the end product). As
progress is made after the initial release, the version is often increased by 0.1 for every
signigicant feature addition, .01 for every minor feature addition, and an incremented letter for
each bug fix (i.e. 1.02b = initial version plus two small features and two bug fixes). Another
alternative is basing the version number on a revision or beta version. Beta products are
mostly-functional programs that may still contain a few bugs. Version numbers for these are
typically something like 1.0beta1.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 27

Chapter 9: A Few Other Things
- Other Events
- MDI: Multiple Document Interface
- Arrays
- 0-based and 1-based indexes
- Modules
- Structures
- Do Loops
- For...Next Loops
- Mid
- Generating "Random" Numbers
- Working with Timers
- Focus

Other Events
If you have used the dropdowns at the top of the code page to automatically create the

Subs for menu items, you should have noticed that there are a variety of other options
besides click. I will highlight a few of them below.

Activated – When using multiple forms, and switching from one to another, the new or remaining form
gets activated. Also, when switching between windows, the newly selected program will be activated.
When either of these scenarios occurs, the code following the Activated event handler will run.
CheckStateChanged – When using CheckBoxes, CheckedListBoxes, or MenuItems containing check
boxes, anytime the value is changed (checked / unchecked) any code following the CheckStateChanged
event handler will run.
Closed – When using multiple forms, if you hide one instead of closing it, you may need to place code in
the closing command of the main form to end the program (or save the document, or...), otherwise the
computer's memory may be monopolized by the program that should have been closed.
DoubleClick – If DoubleClick code is not entered, Click code should be run, but when you would like
different things to occur when an object is clicked or double-clicked, you can enter code in the
DoubleCllick event handler.
DragDrop – You have probably dragged either text or images from one program to another or within a
document. If EnableDragDrop is set to true and an object is dropped on the control, code following the
DragDrop event handler will run.
HScroll – When the user scrolls left or right, code following the HScroll event handler will run.
KeyDown – While it may seem strange, Visual Basic interprets the hitting of a key (or mouse button) as
three separate actions: Down, Press, and Up. If the KeyDown event is used with a specific key, the
code would be run sooner than if KeyUp were used.
Load – Before the visual interface is loaded, code can be set to run. For example, if you wanted a
message box to appear before your game is shown, you could enter code following the Load event
handler.
MouseEnter – MouseEnter, MouseHover, MouseMove, and MouseLeave all deal with the location of
the mouse cursor. If you want the color of a button to change only when the mouse is over it, you could
put code in both the MouseEnter and MouseLeave events.
Paint – When the form is loaded or when another window appears or is moved over the form, the visual
interface has to be generated or regenerated. When this happens, any code following the Paint event
handler is run.
TextChanged – When text is entered or changed in a TextBox or RichTextBox, code following the
TextChanged event handler will run.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 28

MDI: Multiple Document Interface
MDI is an acronym that stands for Multiple Document Interface. As you might imagine,

this is one way of having multiple documents open in the same program at the same time.
Essentially, MDI gives you the ability to have multiple forms contained within a single form.
The screenshot below is an example of a Microsoft Access database using MDI. MDI uses a
system of hierarchy which consists of Parents and Children.

Arrays
Up to this point, we have been working with variables that can only hold a

single value. Arrays are a neat way of storing multiple values in the same
variable. Think of arrays as tables. An array declared
QuizQuestions(9), left, would be a single variable that can hold 10
values. It will hold ten values instead of nine because arrays have 0-based
indexes (see the next section).

Arrays can be
multi-dimensional,
meaning they can be
two-dimensional

(contain columns and rows) or have

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 29

even more dimensions.
The array declared QuizQuestions(2, 5), above, is a single variable that can hold

18 values in 3 columns (2+1=3) and 6 rows (5+1=6).

0-based and 1-based Indexes
Indexes, which we have discussed in connection with the location of characters in a

string (i.e. “x” has an index of 3 in “text”) and in the creation of arrays (i.e. the index of
NewArray(3) is 3), can be structured in two ways. While many computer languages use one
system of indexing or the other, Visual Basic uses both: 0-based and 1-based. The difference
is basically the way the language interprets counting: starting and including 0 (as a computer
would count) or starting and including 1 (as a human would count). In most instances, it is
true that text elements are 1-based and other elements are 0-based, but the ToolTip that
appears when typing code for a specific function should tell you the system to use (see
ToolTip on page 11 for a description of a ToolTip).

Modules
When using multiple forms, you may be required to transfer the values of variables

between forms. In order to accomplish this, you may create a Module in which you can type
standard VB code which will be available to all forms. Modules can be used for both public
variables and public functions (Subs), but both have to be defined as Public.

Structures
Similar to arrays, structures are useful in storing multiple variables. However, while

arrays must use an index, structures contain named variables. The following is an example of
code that makes up a structure, in this case the structure named 'Pepsi' has a variable for
each ingredient.

Structure Pepsi
Dim HighFructoseCornSyrup As Decimal
Dim Sugar As Decimal
Dim Colorings As Decimal
Dim PhosphoricAcid As Decimal
Dim Caffeine As Decimal
Dim CitricAcid As Decimal
Dim NaturalFlavors As Decimal
Dim Water As Decimal

End Structure

Another advantage to structures is that they are designed as templates. You can
declare an infinite number of variables that contain the variables defined within the structure.
This structure must be defined outside of any Sub that references it.

The following code to utilize the structure Pepsi to create 4 variables using that
structure as a template, which could each contain independent values. The second line of
code that follows is the code that would be used to recall the value stored in one of the
structure's variables.

 Dim Pepsi(3) As Pepsi

 TextBox1.Text = "Caffeine: " & Pepsi(0).Caffeine

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 30

Do Loops
Loops are a very useful element of any computer language. They can make the

programmer's job much easier, by performing the same code over and over.

 Do While Condition
 Statement(s)
 Loop

 Do Until Condition
 Statement(s)
 Loop

 Do
 Statement(s)
 Loop While Condition

 Do
 Statement(s)
 Loop Until Condition

There are two different types of Do loops, one which runs as long as a condition is met
and another which runs until a condition is met. These syntaxes are commonly used when
there is no way to predict how many times code needs to be run for the condition to occur.
For example, if characters are doing battle and the amount of damage done is computed with
a random number (see Generating “Random” Numbers in this chapter), you might have code
that would...

Do
Attack

Loop While EnemyAlive = True

However, it is more common to use For...Next Loops in situation when you know or can
calculate how many times code needs to be run.

For...Next Loops
For...Next Loops are generally used more frequently than Do Loops. The For...Next

Loop is set up as follows.

 Dim i As Integer
 For i = 0 To ListBox1.Items.Count - 1
 RichTextBox1.AppendText(ListBox1.Items.Item(i) & ChrW(10))
 Next

The For loop always includes a counter, which can be a pre-existing variable or a variable
created only to be used in the counter. In this case, i was dimensioned for the purpose of
counting. In this case, the code inside the For...Next Statement will run once for each item
inside the ListBox. (The counting starts at 0 and ends at Count – 1 because the item indexes
are 0-based).

 The RichTextBox.AppendText function will add anything within its parentheses to the
very end of whatever is already in the text box.

 ChrW(10) refers to the 'Return' or 'Enter' character, bumping any text following it to the
next line.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 31

Mid
Similar to substring (and available in Visual Basic before Substring) is the Mid function,

which allows us to access only part of any string. The syntax is

Mid(TextPropertyOrVariableName, Start Position, Length)

The TextPropertyOrVariableName can be something like RichTextBox1.Text or
StringVariable1. The start position is 1-based. The length is optional, so if you only include
the string and start position, the Mid function will capture each character from the start
position through the end.

Generating “Random” Numbers
Because computers cannot imagine (but can only run calculations), any random

number the computer comes up with is really not random. In fact, they are often referred to
as pseudo-random. But for most purposes, the random numbers Visual Basic generates are
random enough. The Random function, Rnd(), will generate numbers anywhere from
0.000....001 to 0.999...999 (or between 0 and 1). In order to change these numbers into
numbers you can use, you may have to multiply the number produced by 10, 100, or 1000
and then use the CInt() function to convert the number from a decimal to an integer (whole
number).

 The CInt() function simply cuts the end off of any decimal number in the parentheses
to convert it into an integer.

 There are other 'C' functions such as CDate() with similar functionality.

Working with Timers
There are just a few things to know about timers. Timers are disabled when added. In

order to make them functional, they must be enabled. The code for this is Timer1.Enabled
= True. Make sure to disable the timer when it has performed its role, otherwise it will result
in an endless loop. The duration (or interval) is recorded in milliseconds, so an interval of
1000 would last for one second.

Focus
It is easy to help the user navigate your form using the Focus() function. It tells the

computer to give the specified control priority. For example, if a TextBox is targeted the
cursor will appear in that TextBox. If a Button is targeted, the user can hit the Enter key to
quickly click it.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 32

Chapter 10: Debugging
- Breakpoints
- Viewing the Values of Variables

Debugging is the process of compiling and running your program with the intention of
checking it for errors or bugs. Visual Studio has a number of built-in features that can help
you in the debugging process.

Breakpoints
The most important of these is breakpoints, which force the program to run only until it

reaches a certain point in the code. To set or remove a breakpoint, click the gray bar just to
the left of the line of code at which you would like to break (pause). When run, the program
will pause before the selected line. To start debugging, press F5 or click
the Start Debugging button on the Visual Studio toolbar. The program
will run normally until it reaches the line of code at which you set at a
breakpoint. If this line was under an event handler requiring user action, you will need to
perform that action before the program will stop. The yellow highlight indicates the line of
code that will be run next. To continue the program step by step you may use the 'Step Into'
button (the first with the blue arrow in the screenshot above), or if you would like to continue
normally you may press the Start Debugging button, which has now become the Continue
button.

Viewing the Values of Variables
Anytime during debugging, you can minimize your program to get back to the Visual

Studio interface. There, you can see the value of any variable by simply hovering the mouse
over the variable. Just note that if there is a variable with the same name in more than one
Sub, you can hover over the variable in a sub where the code is not running and it will show
you a value, but this value refers to the variable in the currently active Sub.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 33

Chapter 11: Working With GIMP
- Where to Get GIMP
- At First Glance
- Drawing Tools
- Using Filters
- Saving and Exporting Pictures

Where to Get GIMP
GIMP is a free image manipulation program (GIMP stands for GNU(free) Image

Manipulation Program) which has become a popular replacement for Adobe Photoshop. The
newest version of GIMP can be downloaded from www.gimp.org. While gimp.org does not
host its own compiled program (only the source code), there is a link from the main page
labeled GIMP for Windows which will allow you to download all of the components necessary.
The first of these is GTK+, which is a framework of sorts on which the visual components of
GIMP are built. The primary package is GIMP itself, but there is also a documentation
package (with help files) and an animation package, which is optional but could be used to
add an element of movement to a game.

At First Glance
At first glance, GIMP may seem confusing. For starters, there several windows. The

first is the main window, from which you can open and create new files. This main window
also contains most of the tools we will be working with, including buttons for the brush, pencil,
eraser, and paint can tools. The second window gives you access to layers and many
options for various tools. The window that appears when you create a new file has many
menu items that will allow you to save, change size and resolutions, and play with filters.

Drawing Tools
To get started, create a new file following the first template option (640x480).

Experiment with the pencil and paintbrush tools (the difference being the greater precision of
the pencil), being sure to check out the brush options at the bottom of the main window. I find
the Sparks and Pencil Sketch brushes to be particularly interesting.

Brushes can be used in a number of ways: to draw on top of a background, to draw
“dissolved” on top of a background, etcetera.

Opacity will allow the brush to draw on top of existing artwork and allow some
percentage of that existing artwork to show through. Fade-out effects allow the brush pattern
to fade out over a specified distance.

There are two color options in the main window, which appear as one square on top of
another. The top is the fore color, or the color that will be used for the brush or text you are
currently working with. The bottom square is the background color, which may be applied to
the whole background from the Edit menu or may come into play with some effects.

Using Filters
An easy way to make your artwork look more professional is by applying a filter. While

some filters will change your artwork entirely, others will make subtle changes.

http://www.gimp.org/

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 34

Saving and Exporting Images
Because Visual Studio is a program made by Microsoft Corporation, it prefers native

file formats over other proprietary formats. What this means is there are two ways to save
your artwork to be imported into Visual Studio. The highest quality is a Windows BMP image,
which has a file extension of *.bmp. The format that should be used when distributing your
game is a JPEG image, which has the extensions of *.jpeg, *.jpg, and *.jpe. I would advise
that you save your artwork in two formats, always in the native GIMP format of *.xcf and also
as either a BMP or JPEG image. The first is the best format to save in for later editing, and
the other two are easy to import into Visual Studio.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 35

Chapter 12: Distribution
- Moving Your Visual Studio Project
- Forms of Distribution
- Install Creator
- Patch Maker

Moving Your Visual Studio Project
First thing's first. Moving the

project itself from one computer to
another does not involve just
moving a single file. The project
itself consists of several folders
within folders with files and more
files. To transfer the project itself,
you must copy the folder that
contains files like the image on the
right. There should be a file with
the extension of *.sln (Visual Studio
Solution) and a folder, both named
after the project.

In addition, you may have to
copy files such as images that are
not located in the project folder. It is
recommended that you create a
folder within the project folder to
hold things like images you wish to include in your program so moving the project is easier
and everything is kept together for future reference.

Forms of Distribution
Currently, the two most popular forms of distribution are via disc and via the Internet.

In both of these methods, it is easy use the same installation file. In order to install your
program, you generally want to create an installer. This program should put everything into
one file to distribute which will in turn copy the required files where they need to go.

Install Creator
Install Creator is a great program available from www.clickteam.com which will create

an installer for you. The program has a free version which is virtually the same as the for-cost
version, the only difference is an advertisement for Install Creator will display at the
conclusion of your installation.

Patch Maker
If you are like every other programmer, you may find that you have to change your

program to reflect a new bug or a must-have feature. In order to do so, you might create a
whole new installer. Patch Maker, also available from www.clickteam.com, will create an
installer that will install only the files that have changed from the original installation, resulting
in a smaller and more efficient installation.

http://www.clickteam.com/
http://www.clickteam.com/

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 36

Appendix 1: Glossary

.NET Framework: The package that must be installed before any program created with
Visual Basic .NET can run.

Access Databases: The database format supported by Microsoft Access, it is a relatively
simple format for developers to use if they need to access large quantities of organized
data. Access Databases typically have the file extension of *.mdb.

Application: The software program that the end user sees. Applications typically have the
file extension of *.exe. See Software.

ASP .NET (Active Server Pages): An architecture that allows the developer to create series
of web pages that are programmed like Windows applications but appear to the user
as HTML (that is, normal) web pages.

BMP (Bitmap) Image: This image file format saves the exact color (in RGB, amount Red,
Green, and Blue, format) of every pixel in the image. Bitmap images typically have the
file extension of *.bmp. See pixel.

Boolean: A data type that can contain one of two values: true or false.
Bug: An error in program code that results in an unintended (or the lack of an) action. When

the user enters a word into a field that should only hold numbers and the program does
not have a predefined response, a bug has emerged. See field.

Char: A char variable will store a single character, be it letter, number, or punctuation mark.
Clipboard: The clipboard is a place in the computer's memory where you can temporarily

store files, pictures, text, etcetera by using the Cut, Copy, and Paste functions in many
programs.

Computer Language: A language (such as Visual Basic) that allows a programmer to
communicate with a computer much like English allows one person to talk to another.
A computer language, like any spoken language, has a set syntax and vocabulary.
See syntax.

Compiling: In layman's terms, compiling is the process the computer uses to convert your
layout design and code into a single application. Visual Basic is not the only language
that compiles: every computer language has to be converted from human-understood
code to 1s and 0s that a computer can understand.

Control: A general name for any item the user can interact with that is placed on a form.
Examples include buttons, menus, and text boxes.

Debugging: The name given to the process of running your program and letting Visual
Studio identify errors that occur during normal use of your program.

Dialog: A window or other visual element that appears on the screen on top of the main
program, allows the user to enter or read information, then closes to return focus to the
main program. See focus.

Disposed: When a control or variable is no longer needed, it can be permanently removed
from the program and dismissed from memory. This is also known as disposal.

Distribution: 1. Another way to refer to an installation package, a distribution includes all the
files that must be present on a user’s computer for a given program to run.

2. The process of transferring a program to the end user.
Field: 1. A control where data can be entered (such as a text box)

 2. A component of database hierarchy.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 37

Focus: When you switch from one program to another, such as from a word processor (i.e.
Microsoft Word) to a web browser (i.e. Microsoft Internet Explorer), you give the new
program focus. The program with focus is the one that will capture anything the user
enters on the keyboard.

Form: In most basic terms, form is another name for screen real estate, or the space that
you have to place items on. Form also translates to 'window', as you may have
multiple forms in a given application.

Function: A process built into Visual Studio in order to process data or otherwise accomplish
a goal. Examples of functions include RichTextBox.Find(), Text.Substring(), Rnd(),
and ListBox.Items.Clear().

Global Variable: A term used to describe two types of variables.
1. A variable that appears outside of any Subs on a Form, but within the Class
declaration.
2. A variable declared publicly in a module, thus being accessible to all Forms.

Hardware: A term used to describe any piece of the computer that can be physically added
or removed. Examples include add-in cards, hard drives, CD-ROM drives, etc.

HTML (Hyper Text Markup Language): The most widely used format for web pages.
Icons: Small pictures used to indicate a button or program's function (usually 32 pixels wide

and 32 pixels tall).
IDE (Integrated Development Environment): A name given to the program used by

developers to create applications; in this case Visual Studio.
Index: 1. A number that refers to the ranking of a character (or string of characters) within a

body of text. For example, “x” has an index of 3 in “text”.
 2. A number that refers to the location of an element in an array.

Integer: A whole number data type.
JET Databases: See Access Databases.
JPEG (Joint Photographic Experts Group): This image file format stores the exact color of

some of the pixels and then approximates the rest. In addition, this information
undergoes compression to make the file size even smaller. JPEG files typically have
the file extension of *.jpg. See pixel.

Pixel: The smallest distinguishable dot on a computer monitor or printed media. There are
786,432 pixels on a standard-resolution (1024x768) monitor.

Plain Text: A text file format that supports only text; not multiple fonts or font styles, tables,
or images. Plain Text files typically have the extension of *.txt.

Proprietary: A proprietary format is a format owned and licensed by a single company. You
can only write software to manipulate Microsoft Word Documents if you license it from
Microsoft, but you can write software to manipulate Rich Text Format Documents
without licensing it because it is NOT proprietary.

RTF (Rich Text Format): A text file format supporting bold and italic text, tables, and
images. RTF documents may be opened by nearly all word processing programs and
is often used when sharing documents. Rich Text files typically have the extension of
*.rtf.

Software: A term used to describe any application or program on your computer that cannot
be physically separated from the computer, but is stored on your computer's hard
drive. See hardware.

Stack: A variable that stores and recalls data in the order in which it is added. An excellent

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 38

example of use for this type of variable is in a web browser. When you click any link,
the destination is added to the top of the 'Back' stack. When you click 'Back', you take
the last destination from the top of the stack, load it, and add it to the top of the
'Forward' stack. When you click 'Forward', you take the page at the top of the
'Forward' stack, load it, and add the page's URL to the top of the 'Back' stack.

String: A text data type. If only one character is required, the char data type may be used.
SQL Server: Pronounced Sequel Server, this is the proprietary framework Microsoft has

produced for creating advanced network connections for the management of data and
databases.

Syntax: The grammar of a language. Just as someone would not fully understand another
person who never used nouns, the computer cannot understand the programmer if
their communication is in an improper format. In VB, for example, if an equal sign is
used, it must be followed by a property, variable, or function that produces a value.

URL: Universal Resource Location. The location of a page, image, or video on the Internet.
Variable: A variable is a named space in your computer's memory that stores data.
VB (Visual Basic): A computer language used to create Windows applications or programs.

In this book, the version that is used is Visual Basic .NET 2005.

Microsoft Visual Basic .NET 2005 Walkthrough and Reference Guide 39

Appendix 2: Recommended Software & References

Recommended Software
 Blender: A free CAD (Computer Aided Design) program useful in creating textured or 3-
dimensional computer models. While using 3-dimensional graphics within Visual Basic is
extremely difficult at best, you can use images of 3-dimensional graphics created in Blender
to spice up your programs. www.blender.org
 GIMP (GNU Image Manipulation Program): A free photo editing program which has
become a popular replacement for Adobe Photoshop. An important asset if you are creating
an image-driven game. www.gimp.org
 Install Creator: Creating an installer is the easiest way to distribute your applications. You
can use Install Creator and use it for free to distribute programs quickly and easily as a single-
file installer. http://www.clickteam.com
 OpenOffice.org: OpenOffice.org Writer is a free word processing program which has
become a popular replacement for Microsoft Word. Its package also includes Calc, Impress,
Base, and Draw, which are replacements for Microsoft Excel, Microsoft Power Point,
Microsoft Access, and Microsoft Publisher, respectively. OpenOffice.org will open and save
to a variety of file formats, including Microsoft's. www.openoffice.org
 Patch Maker: Patch Maker is a program designed to supplement Install Creator that will
compare files from the original installation to files from an updated installation and create an
installer that will change only the required files. This will produce a smaller installation file
than a completely new installer would. http://www.clickteam.com
 Scribus: A free desktop publishing program that is emerging as a replacement for Microsoft
Publisher. It can be used to plan designs of web pages or print media. www.scribus.net

References
 Introducing Microsoft Visual Basic 2005 for Developers by Microsoft. Available from
http://msdn2.microsoft.com/en-us/vbasic/ms789094.aspx.
 Microsoft Visual Basic .NET 2005 Step by Step by Michael Halvorson. Published in 2005
by Microsoft Press; Redmond, Washington 98052-6399.
 Microsoft Visual Basic .NET Step by Step by Michael Halvorson. Published in 2002 by
Microsoft Press; Redmond, Washington 98052-6399.

http://msdn2.microsoft.com/en-us/vbasic/ms789094.aspx
http://www.scribus.net/
http://www.clickteam.com/eng/installcreator.php
http://www.openoffice.org/
http://www.clickteam.com/eng/installcreator.php
http://www.gimp.org/
http://www.blender.org/

